the constant-pressure specific heat, $C_{p},{ }^{13}$ derived from measurements on the saturated liquid. If the relations hold at higher pressures, then for the limits 5×10^{-2} $<\left|P-P_{\lambda}\right|<10 \mathrm{~atm}$ or $5 \times 10^{-4}<\left|T-T_{\lambda}\right|<10^{-1}{ }^{\circ} \mathrm{K}, \beta$ tends to vary linearly with α_{P} and C_{p}, which is consistent with the Buckingham-Fairbank ${ }^{14}$ derivations. Unfortunately, the experimental ranges of pressure do not overlap. Therefore direct comparisons between the data cannot be made. However, at the λ point of $2.023^{\circ} \mathrm{K}$ and 13.04 atm Lounasmaa ${ }^{4}$ found that β, measured with $10^{-3} \mathrm{~atm}$ resolution, varied linearly with $\left|P-P_{\lambda}\right|$ for $10^{-3}<\left|P-P_{\lambda}\right|<10^{-2} \mathrm{~atm}$. At $\left|P-P_{\lambda}\right|=10^{-3} \mathrm{~atm}$, his results coincide with the values from Eqs. (3) and (5), namely, $\beta_{-}=8.8$ and $\beta_{+}=7.9$ in $10^{-3} \mathrm{~atm}^{-1}$ units. At $\left|P-P_{\lambda}\right|=10^{-2} \mathrm{~atm}$, the agreement is poorer but still acceptable. It is notable that the highest values of β observed near a λ point are only $\sim 10^{-2} \mathrm{~atm}^{-1}$.

Table II. Constants in Eq. (5).

T $\left({ }^{\circ} \mathrm{K}\right)$	P_{λ} (atm)	a_{-} $\left(\mathrm{atm}^{-1}\right)$	b_{-} $\left(\mathrm{atm}^{-1}\right)$	a_{+} $\left(\mathrm{atm}^{-1}\right)$	b_{+} $\left(\mathrm{atm}^{-1}\right)$
2.050	10.92	0.75	0.42	0.16	0.34
2.000	14.62	0.93	0.48	0.20	0.41
1.949	18.27	1.08	0.58	0.25	0.46
1.899	21.65	1.38	0.74	0.55	0.53
1.880	22.86	1.52	0.77	0.55	0.44
1.865	23.81	1.78	0.92	0.58	0.53
1.799	27.74	1.79	1.23	0.62	0.60

Therefore, the validity of an expression like Eq. (5) cannot continue indefinitely as the λ point is approached. Goldstein ${ }^{15}$ pointed out that the root-meansquare temperature fluctuations of the system, the upper limit of meaningful $\left|T-T_{\lambda}\right|$ values, is $\sim 10^{-12^{\circ}} \mathrm{K}$.

The sound velocities of Atkins and Stasior ${ }^{2}$ were combined with the densities of Keesom and Keesom ${ }^{1}$ to derive the adiabatic compressibilities, $\beta_{S}=\left(\rho u^{2}\right)^{-1}$. Although the velocities should have high resolution, no anomalous variation of β_{S} with pressure was seen near

[^0]

Fig. 9. The ratio of specific heats C_{P} / C_{V} versus pressure for liquid He^{4} at several temperatures.
the λ transition. The β_{S} values were combined with the present isothermal compressibilities to derive C_{P} / C_{V} $=\beta / \beta_{S}$, the ratio of specific heats. Figure 9 shows C_{P} / C_{V} rising with pressure, reaching peaks of ~ 1.6 at the λ transition, before dropping to the values at $2.20^{\circ} \mathrm{K}$, which are at most 1.05 . The peak heights of the C_{P} / C_{V} ratio are indefinite, as are those of β, whereas the derivations of Buckingham and Fairbank ${ }^{14}$ indicate that if $C_{P} \rightarrow \infty, \beta \rightarrow \infty$ while C_{V} and β_{S} remain finite. However, this behavior of C_{V} and β_{S} can be questioned if the λ transition is connected with the liquid-gas critical point [see Tisza ${ }^{16}$ and Green ${ }^{17}$]. As the critical point is approached, singular functions are indicated for β_{S} and C_{V} by Chase, Williamson, and Tisza ${ }^{18}$ and by Moldover and Little, ${ }^{19}$ respectively. Therefore, the functions for β_{S} and C_{V} might be similar enough to those for β and C_{P} that $C_{P} / C_{V}=\beta / \beta_{S}$ remains finite at the λ transition.

ACKNOWLEDGMENT

It is a pleasure to thank Dr. Louis Goldstein for his interest, suggestions, and encouragement in this investigation.

[^1]
[^0]: ${ }^{13}$ W. M. Fairbank, M. J. Buckingham, and C. F. Kellers, in Low Temperalure Physics and Chemistry, edited by J. K. Dillinger (University of Wisconsin Press, Madison, Wisconsin, 1958), p. 50.
 ${ }^{14}$ M. J. Buckingham and W. M. Fairbank, in Progress in Low Temperature Physics, edited by C. J. Gorter (North-Holland Publishing Company, Amsterdam, 1961), Vol. 3, Chap. III.
 ${ }^{15}$ L. Goldstein, Phys. Rev. 135, A1471 (1964); 137, AB4(E) (1965).

[^1]: ${ }^{16}$ L. Tisza, Ann. Phys. (N. Y.) 13, 1 (1961).
 ${ }^{17}$ M. S. Green, Science 150, 229 (1965).
 ${ }^{18}$ C. E. Chase, R. C. Williamson, and L. Tisza, Phys. Rev. Letters 13, 467 (1964).
 ${ }^{19}$ M. R. Moldover and W. A. Little, Phys. Rev. Letters 15, 54 (1965).

